

Exploring Consistency in Graph Representations: from Graph Kernels to Graph Neural Networks

Motivation

GNNs fail to capture the similarity structure!

[Order Consistency] The normalized iterative graph kernels $\mathbb{K}_{\mathcal{F}_{c},\phi}(x, y, i)$ are said to preserve order consistency if the similarity ranking remains consistent across different iterations for any pair of graphs:

 $\tilde{\mathbb{K}}_{\mathcal{F}_{c},\phi}(x,y,i) > \tilde{\mathbb{K}}_{\mathcal{F}_{c},\phi}(x,z,i) \Rightarrow \tilde{\mathbb{K}}_{\mathcal{F}_{c},\phi}(x,y,i+1) \ge \tilde{\mathbb{K}}_{\mathcal{F}_{c},\phi}(x,z,i+1) \quad \forall x,y,z \in \chi$

Verification:

- WL-subtree Kernel^[1]: - Does not follow either principle. - WLOA Kernel^[2]: - Monotonically decreases. - Preserves the order consistency asymptotically. WLOA outperform WL-subtree in various benchmark.

Question: Can we apply the two principles to enhance GNN performance?

Consistency Loss

Applying Two Principles to GNNs:

Limitations

Graph Kernels:

+ Effective at capturing relative graph similarities

- Depends on predefined kernels and lacks adequate nonlinearities

GNNs:

- + Good at capturing non-linearities
- Ineffective at capturing relative graph similarity

Analogy between GNNs and IGS

Iterative Graph Kernels (IGK): Graph kernels obtained from an iterative coloring process

IGKs

Given: A graph G with a set of nodes V.

- Assign an initial color $c^{(0)}(v)$ to each node v.
- Iteratively refine node colors by
- $c^{(k+1)}(v) = \text{HASH}\left(\left\{c^{(k)}(v), \left\{c^{(k)}(u)\right\}_{u \in N(v)}\right\}\right)$

maps different inputs to different colors

• After k steps of color refinement, $c^{(k)}(v)$ summarizes the structure of k-hop neighborhood

Given the analogy between GNNs and IGKs, can we bridge the two worlds?

Principles

[Monotonically Decreasing] The normalized iterative graph kernels $\mathbb{K}_{\mathcal{F}_c,\phi}(x,y,i)$ are said to be monotonically decreasing if and only if:

 $\tilde{\mathbb{K}}_{\mathcal{F}_{c},\phi}(x,y,i) \geq \tilde{\mathbb{K}}_{\mathcal{F}_{c},\phi}(x,y,i+1) \quad \forall x,y \in \chi$

Theorem: Two principles guarantee provable generalizability in graph classification tasks.

Learn similarity order using signals from the previous layer.

DARTMOUTH

Experiments

Performance

	#Graphs Avg. #nodes	NCI1 4110 29.87	NCI109 4127 29.68	PROTEINS 1113 39.06	D&D 1178 284.32	IMDB-B 1000 19.77	IMDB-M 1500 13.00	COLLAB 5000 74.49	COIL-RAG 3900 3.01	OGB-HIV 41127 25.50	REDDIT-T 203088 23.93
Kipf et al.	$\begin{array}{c} \text{GCN} \\ +\mathcal{L}_{\text{consistency}} \end{array}$	$\begin{array}{c} 73.96 {\scriptstyle \pm 2.37} \\ 75.12 {\scriptstyle \pm 1.19} \end{array}$	$\begin{array}{c} 74.04 {\pm}~{}_{3.09} \\ 73.25 {\pm}~{}_{1.25} \end{array}$	$\begin{array}{c} 73.24 {\pm} {\scriptstyle 6.93} \\ 75.07 {\pm} {\scriptstyle 5.05} \end{array}$	$\begin{array}{c} 74.92 \pm 2.66 \\ 78.56 \pm 3.32 \end{array}$	$\begin{array}{c} 75.40 \pm 2.97 \\ 75.85 \pm 1.82 \end{array}$	$55.07{\scriptstyle\pm1.24}\atop{\scriptstyle56.27{\scriptstyle\pm1.00}}$	$81.72{\scriptstyle\pm0.84}\atop\scriptstyle83.44{\scriptstyle\pm0.45}$	$91.72{\scriptstyle\pm1.65}\\93.38{\scriptstyle\pm1.64}$	$72.86{\scriptstyle \pm 1.90 \\ 73.75{\scriptstyle \pm 0.89}}$	$76.00{\scriptstyle \pm 0.44} \\ 77.12{\scriptstyle \pm 0.12}$
Xu et al. ICLR' 19	$\begin{array}{c} \text{GIN} \\ +\mathcal{L}_{\text{consistency}} \end{array}$	$78.13 {\scriptstyle \pm 2.11} \\79.45 {\scriptstyle \pm 1.09}$	$76.75 {\scriptstyle \pm 2.91} \\ 77.46 {\scriptstyle \pm 1.96}$	$72.97 {\scriptstyle \pm 4.59} \\74.98 {\scriptstyle \pm 4.57}$	$\begin{array}{c} 71.10 \pm ~ 4.63 \\ 75.51 \pm ~ 2.63 \end{array}$	$\begin{array}{c} 70.80 \pm 4.07 \\ 74.50 \pm 3.06 \end{array}$	$52.13{\scriptstyle \pm 1.42}\atop{\scriptstyle 53.46{\scriptstyle \pm 2.44}}$	$79.84{\scriptstyle\pm1.05}\atop84.16{\scriptstyle\pm0.81}$	$93.33{\scriptstyle \pm 1.48} \\94.03{\scriptstyle \pm 1.33}$	$\begin{array}{c} 71.60 \pm 2.36 \\ 74.57 \pm 1.61 \end{array}$	$77.50{\scriptstyle \pm 0.16} \\ 77.64{\scriptstyle \pm 0.05}$
Xu et al. NeurIPS' 17	GraphSAGE + $\mathcal{L}_{consistency}$	$\begin{array}{c} 74.40 \pm 1.83 \\ 78.26 \pm 1.08 \end{array}$	$73.17 {\scriptstyle \pm 0.47} \\74.10 {\scriptstyle \pm 2.10}$	$74.96 {\scriptstyle \pm 3.14} \\76.40 {\scriptstyle \pm 3.12}$	$\begin{array}{c} 76.44 {\scriptstyle \pm 4.16} \\ 77.50 {\scriptstyle \pm 3.38} \end{array}$	$\begin{array}{c} 73.90 \pm 2.17 \\ 74.75 \pm 3.06 \end{array}$	$51.33{\scriptstyle \pm 2.95}\atop{\scriptstyle 54.27{\scriptstyle \pm 1.24}}$	$78.92{\scriptstyle\pm1.20}\atop{\scriptstyle82.12{\scriptstyle\pm0.78}}$	$89.56{\scriptstyle \pm 2.37} \\92.31{\scriptstyle \pm 1.32}$	$77.03{\scriptstyle\pm1.65}\atop78.60{\scriptstyle\pm1.44}$	$76.67 \scriptstyle \pm 0.11 \\ 77.57 \scriptstyle \pm 0.05 \\ $
Shi et al.	$\begin{array}{c} \text{GTransformer} \\ + \mathcal{L}_{\text{consistency}} \end{array}$	$75.72{\scriptstyle\pm2.69}\atop76.83{\scriptstyle\pm1.36}$	$74.79{\scriptstyle\pm1.82\atop75.82{\scriptstyle\pm1.53}}$	$73.33{\scriptstyle \pm 4.80} \\ 77.03{\scriptstyle \pm 3.79}$	$75.42{\scriptstyle\pm3.22}\atop76.57{\scriptstyle\pm2.54}$	$72.20{\scriptstyle\pm3.49}\atop73.75{\scriptstyle\pm2.56}$	$53.33{\scriptstyle \pm 1.12}\atop{\scriptstyle 56.53{\scriptstyle \pm 1.54}}$	$80.36{\scriptstyle \pm 0.56} \\ 80.48{\scriptstyle \pm 0.47}$	$83.74{\scriptstyle \pm 3.17} \\91.67{\scriptstyle \pm 1.88}$	$76.81{\scriptstyle \pm 1.34} \\76.90{\scriptstyle \pm 3.25}$	$76.75{\scriptstyle \pm 0.12} \\ 77.14{\scriptstyle \pm 0.06}$
Baek et al.	$\begin{array}{c} \text{GMT} \\ +\mathcal{L}_{\text{consistency}} \end{array}$	$75.04{\scriptstyle\pm1.43} \\ 75.52{\scriptstyle\pm1.07}$	$\begin{array}{c} 73.90 \scriptstyle \pm 2.29 \\ 75.20 \scriptstyle \pm 0.95 \end{array}$	$72.70{\scriptstyle\pm4.21}\\74.86{\scriptstyle\pm2.03}$	$72.80{\scriptstyle\pm2.19}\atop73.14{\scriptstyle\pm2.28}$	$79.80{\scriptstyle\pm1.08}\atop79.60{\scriptstyle\pm1.91}$	$54.13{\scriptstyle\pm2.90}\atop{\scriptstyle54.80{\scriptstyle\pm1.42}}$	$\begin{array}{c} 80.36 \pm 1.15 \\ 82.80 \pm 0.61 \end{array}$	$90.85{\scriptstyle\pm1.91}\\92.00{\scriptstyle\pm1.43}$	$74.86{\scriptstyle\pm2.26}\atop76.00{\scriptstyle\pm1.99}$	$72.06{\scriptstyle\pm10.15}\atop77.19{\scriptstyle\pm0.14}$

Table 1: Performance on the graph classification tasks, with and without consistency loss. The highlighted cells indicate instances where GNNs with our proposed consistency loss outperform the base GNNs.

Consistency

	NCI1	NCI109	PROTEINS	D&D	IMDB-B
GCN	0.753	0.920	0.584	0.709	0.846
$+\mathcal{L}_{consistency}$	0.859	0.958	0.946	0.896	0.907
GIN	0.666	0.674	0.741	0.721	0.598
$+\mathcal{L}_{consistency}$	0.877	0.821	0.904	0.847	0.816
GraphSAGE	0.903	0.504	0.845	0.741	0.806
$+\mathcal{L}_{consistency}$	0.911	0.709	0.916	0.872	0.933
GTransformer	0.829	0.817	0.867	0.865	0.884
$+\mathcal{L}_{consistency}$	0.863	0.883	0.915	0.880	0.917
GMT	0.872	0.887	0.980	0.826	0.893
$+\mathcal{L}_{consistency}$	0.906	0.908	0.983	0.856	0.908

 Table 2: Spearman Correlation in Consecutive Layer Graph
Representations. The representation space becomes more aligned with the proposed consistency loss.

Efficiency

	GMT	GTransformer	GIN	GCN	GraphSAGE
GCN	8.380	4.937	4.318	4.221	3.952
$GCN+\mathcal{L}_{consistency}$	8.861	6.358	5.529	5.382	5.252

Table 3: Training Time per Epoch (Seconds, OGBG-MOLHIV): Impact of Consistency Loss is Minimal

References

[1]Nino Shervashidze et al. (2010). "Weisfeiler-lehman graph kernels." In: Journal of Machine Learning Research.

[2]Nils M. Kriege, et al. (2016). "On valid optimal assignment kernels and applications to graph classification" In: In Advances in Neural Information Processing Systems. [3]Keyulu Xu et al. (2019). "How Powerful are Graph Neural Networks?" In: International Conference on Learning Representations

